Tuesday, July 9, 2013

FUNDAMENTALS OF INPATIENT CARE OF SURGICAL PATIENTS



The goal of the Trauma/Acute Care Surgery service is to provide cost-effective, high-quality patient care. In order to achieve this goal a customer service model has been implemented. The physician/nurse team will make excellent patient care the focus of their effort. This will be accomplished by application of “best practice” models using evidence based clinical data. This will allow the physician/nurse team to direct ancillary services in the most cost-effective manner for excellent patient care.

General Guidelines for Patient Care
            The very best way to care for patients is to understand physiology and pathophysiology. This allows the clinician to understand the treatment being rendered. In general, if it sounds stupid, it is stupid! Remember that every beneficial intervention also has the potential to cause harm. When a treatment or intervention is no longer required discontinue the intervention/treatment. Nasogastric tubes are useful for gastric decompression and to prevent emesis associated with bowel obstruction. On the other hand the tubes are uncomfortable and predispose the patient to sinusitis, GERD, and aspiration. Proton pump inhibitors and H2 antagonists reduce the incidence of stress ulceration. However, they are associated bacterial overgrowth in the stomach that may lead to nosocomial pneumonia. IV catheters and fluids can be life saving but they are also associated with thrombophlebitis and infection. Foley catheters may be needed for urinary retention or monitoring of intake and output. However, they are associated with urethral strictures and infections. Phlebotomy for blood tests is a necessary part of patient care. However, excess phlebotomy can and does result in anemia that can be harmful to patients. Medications are extremely important for patient care but drug interactions and adverse reactions can be harmful to patients. These are a few examples of the myriad of rather simple interventions and therapies that can and do harm patients. Modern medical care is exceedingly expensive. Ask yourself why a particular intervention, test, or medication is being used. Is this needed? How does this benefit the patient? What is the harm? How much is this going to cost? What information will I gain? Through rigorous self-examination the answer for many of these questions is easier than you think.

Mobilization
            There is clear, irrefutable evidence that extended bed rest is harmful to patients. Supine position and lack of mobilization leads to reductions in pulmonary functional residual capacity, atelectasis, diminished cough, and accumulation of dependent lung water. This makes the patient more prone to pulmonary complications which are the most frequent cause of admission or readmission to the ICU. Bed rest also leads to rapid loss of muscle mass leading to de-conditioning which may increase hospital length of stay, lengthen rehabilitation, or create the need for rehabilitation that would have not been otherwise needed. Patients at bed rest are more prone to pressure ulcers, bowel dysfunction, and venous thromboembolic disease.
            A primary focus of patient care should be early mobilization of the patient. Weight-bearing status should be determined within 24 hours of admission to the hospital and documented in the Mobility Order Set. Ambulation of the patient should be an immediate goal, using the Mobility Plan of Care. If there are limitations on weight-bearing these should be identified and appropriate resources (physical therapy, equipment, etc) should be applied immediately. At the very least, patients should be out of bed and placed in a chair in the upright position. This does not mean bringing the bed into a sitting position but actually getting the patients out of the bed into a chair or at least siting upright on the bedside. If traction or hemorrhage risk mandates bed rest, the patients should be nursed with the head of the bed elevated at least 30 degrees. When strict logroll is in place the patient should be placed in reverse Trendelenburg.

Respiratory Function
            Respiratory therapy is essential for acutely ill and injured patients. Many of our patients have co- morbid lung disease and/or a history of heavy tobacco use. Lung function is further compromised by bed rest, obesity, chest wall trauma, pain, surgical incisions, chest tubes, or via the use of cervical collars, back braces, and/or traction. It is unrealistic to expect respiratory therapy service to assume this task for most patients. Pulmonary toilet should be a major goal for excellent nursing care.

Prevention is the key element here.
            Apply vigorous pulmonary toilet early! Use the respiratory therapist wisely. It is far easier to prevent respiratory failure than to treat the consequences. Patients also require education as to their role in pulmonary toilet. Patients often equate pain with further damage. They need to understand that pulmonary toilet may cause pain but not harm. The simplest and best pulmonary toilet is to mobilize the patient. This requires patient effort resulting in work of breathing that maintains respiratory muscle function. Mobilization also shifts lung water, increases lung functional residual capacity, and reduces atelectasis. Mobilization should be supplemented with education on maximum voluntary ventilation, as well as coughing and deep breathing. Inspirometers (incentive spirometers, ‘blow bottles’) can and should be used to supplement coughing and deep breathing. Some patients may require bronchodilators and/or chest physiotherapy. Occasionally expectorants are also required. Some patients may require nasotracheal suctioning. Pain control is essential. Patients should be comfortable but not so somnolent that they can’t actively participate in pulmonary toilet.

A word about supplemental oxygen
            Supplemental oxygen is expensive and unnecessary for most patients. Oxygen does not improve respiratory failure! In fact, supplemental oxygen usually masks worsening respiratory function that would respond to pulmonary toilet. Virtually all human beings have arterial desaturation when recumbent or sleeping. Spot pulse oximetry in these circumstances is of no clinical value and frequently results in unnecessary application of supplemental oxygen. Respiratory rate and effort combined with auscultory findings, radiograph, and subjective patient complaints are much better determinants of respiratory failure than arterial desaturation. In the latter circumstance, supplemental oxygen should be used along with pulmonary toilet.

Central nervous system injury
            Patients with head and/or spinal cord injury do not have normal pulmonary toilet. These patients rely heavily on positioning, mobilization, and active pulmonary toilet to avert respiratory failure. Nasotracheal suctioning along with chest physiotherapy, bronchodilators, and breathing exercises should be used liberally in this patient group.

Tracheostomy
            Tracheostomy is frequently required for the management of airway, pulmonary toilet, and/or respiratory failure in patients with complex critical illness and/or injury. The vast majority of these are performed percutaneously although some are still placed using the older, but still reliable, open surgical technique. Regardless of placement technique, complications, daily tracheostomy tube/site care, and downsizing/decannulation are the same.

Complications
            Dislodgement: The most common early and lethal complication of tracheostomy is tube dislodgement. In order to prevent this complication the tracheostomy tube is secured to the skin with sutures and fixed in place with a secure neck strap. Sutures often give a false sense of security and will not in and of themselves eliminate dislodgement. The most important defense against early dislodgement is a secure neck strap and strict avoidance of undue tension and/or torque on the fresh tracheostomy. It takes about four days after insertion to develop a mature tract. After four days, dislodgement rarely results airway compromise and the tube can simply be reinserted through the neck. Prior to four days, airway loss is likely if the tracheostomy tube is dislodged and the patient may require endotracheal intubation ORALLY to reestablish the airway. This is a true emergency that requires the immediate attention of the surgical house staff. The patient can be temporized with 100% oxygen delivered via bag valve mask and gentle occlusion of the tracheostomy site.

Plugging: The most common intermediate complication of tracheostomy is mucous plugging. This will be the most frequent problem encountered with ward patients. Secretions build up in the tracheostomy tube lumen leading to sudden occlusion and airway compromise. Virtually all of the tracheostomy tubes in use at UKMC have a removable inner cannula. The routine practice of maintaining cuff deflation and routine inspection/cleaning of the inner cannula will prevent this complication.

Stenosis: Tracheal stenosis is a late complication of tracheostomy. Virtually all tracheostomies (85%) are associated with some degree of tracheal stenosis. Only 1-2% of patients develop critical stenosis that compromises the airway and produces clinical symptoms. The duration of endotracheal intubation (> 11 days) prior to tracheostomy, technique used (open > percutaneous), higher placement (between rings 1-2 vs. 2 or lower), and smaller airway (children, females) all increase the rate of clinically significant tracheal stenosis. Almost all clinically significant stenosis occur within twelve weeks of tracheostomy. The hallmark of clinically significant tracheal stenosis is respiratory distress and/or stridor and wheezing when the tracheostomy tube is plugged or removed. If plug removal or tracheostomy tube reinsertion alleviates symptoms the tube should remain in place until a diagnostic evaluation can be performed.

Tracheal-arterial fistula: Small amounts of bleeding may occur simply from the irritation of suctioning, site care and/or the tube itself. A rare but lethal complication of tracheostomy is tracheal-arterial fistula that occurs from erosion of the tip of the tracheostomy tube into the great vessels of the upper thorax. The hallmark of this complication is a “herald bleed” defined as a moderate to large amount of bleeding that stops spontaneously. If bleeding persists or produces airway compromise, the endotracheal tube cuff can be inflated to tamponade bleeding and maintain the airway. Herald bleeding requires immediate investigation!

Infection: Tracheostomy site infection is exceedingly rare. The presence of purulent, foul–smelling secretions accompanied by an expanding zone of erythema establishes the diagnosis. Site care and appropriate antimicrobial therapy are effective in controlling this complication.

Tracheocutaneous fistula: This is a rare complication of tracheostomy that is defined as a persistent air leak present for more than one week after decannulation. While a small percentage of these will close after 7 days most will require a surgical intervention to achieve closure.

Bronchorrhea: Copious secretions usually indicate a residual or recurrent pulmonary problem. Occasionally, these secretions are due to the endotracheal tube itself. The tube can and does irritate the upper airway producing excessive secretions. Decannulation is the treatment of choice. If the patient still requires a tracheostomy (coma), a drying agent such as Robinul (glycopyrrolate) can be used.

Tracheostomy tube/site care
            The tracheostomy tube and site should be inspected at least once daily. The site itself should be inspected for purulence and erythema. Gentle cleansing with a small amount of soap and water followed by a dry dressing provides ample site care. The inner cannula should be removed, inspected, and cleaned as necessary to remove build up of dried secretions. The tracheostomy tape should be snug enough to prevent excess movement of the tube but not so tight as to produce skin breakdown/ulceration. When the patient is not being mechanically ventilated, the balloon should be deflated on cuffed tubes. Sutures, if present, can be removed after six days. Tracheostomy bypasses the normal humidification provided by the oro/nasopharynx so patients are prone to evaporative water loss and desiccation of the airway mucosa. Humidified air or oxygen (if required) should be used at all times to prevent the latter complications. A tracheostomy care and monitoring guideline has been implemented at UK Healthcare and is considered a consensus among all physician groups who perform tracheostomy.

Downsizing and decannulation
            The general practice of downsizing a tracheostomy tube prior to decannulation is controversial. Be that as it may, downsizing the tracheostomy tube prior to decannulation is the routine practice at UKMC. The stated advantages are a reduction in size of the tract to reduce tracheocutaneous fistulas and to detect tracheal stenosis prior to decannulation. After four days a well-established tract exists between the surface and the trachea. Downsizing can proceed safely at this point. Decannulation should not proceed until the patient is clinically stable. Respiratory failure should be stable or improving and suctioning requirements should be nominal (>2-4 hours). The patient should have a vigorous cough and be able to handle their secretions. There should be no residual airway issues. As a first step, the plastic tracheostomy tubes (Usually Shiley occasional Portex or Bivona) are removed and replaced with a 6mm metal tube (Jackson). These can then be plugged. If the patient tolerates plugging (see complications: tracheal stenosis), has a good cough and minimal secretions, decannulation can proceed. The tracheostomy site should be covered with an occlusive dressing. The patient should be monitored closely over the next 24 hours for any evidence of respiratory distress. Closure of the tract usually requires 24-48 hours. Comatose patients can be downsized but should not be decannulated. This group of patients rarely has a good cough and cannot protect their airway. Consequently, they remain at risk for aspiration and/or respiratory compromise.

Dysphagia and aspiration following tracheostomy
            Dysphagia and/or aspiration following tracheostomy are very common. Most patients who require a tracheostomy have not had oral intake for some time. This is complicated by the fact that the tracheostomy itself may interfere with swallowing. This is simply a problem of training/initiating a swallowing bolus! To initiate oral intake, cuffed tracheostomy tubes should be deflated or downsized to a smaller metal tracheostomy. Oral intake should never begin with liquids. It is much harder to develop a swallowing bolus with liquids. The initial oral feeding challenge should be with thickened liquids and/or solids. Most importantly, the patient should be sitting upright. Why don’t you try to swallow liquids in a supine position! If managed correctly, this is rarely a clinical problem and oral feeding can be safely resumed. Nurse-performed dysphagia screens are our first line of evaluation of patients at risk. Give the patient good instructions and several attempts before conceding failure. Decannulation, if indicated, can also be accomplished prior to another try. The dysphagia team should be consulted if nursing is concerned that aspiration is, in fact, occurring. Contrast studies can, however, overestimate the problem and can lead to unnecessary, complicated, and expensive alternatives. Fortunately, only an occasional patient will fail and require an alternative feeding access.

Intravenous Access
            Three quarters (75%) of all hospital bactermia events are associated with intravenous catheters! There is a general hospital wide practice to “heparin lock” and keep both peripheral and central venous catheters. Keeping multiple IV sites is simply not a good practice. Each and every IV site represents a potential nosocomial infection site for patients. Both insertion technique and indwell time influence subsequent thrombophlebitis. Many catheters are placed under less than ideal conditions and should be removed as soon as possible. In all but the most unusual circumstances, a patient will require a single functioning IV access site. Proper inspection, site care and hub cleansing should be used to maintain function and sterility. All other intravenous access sites should be removed.

Wound Care
            Wound care is much easier than most physicians and nurses think. The process has become unnecessarily complicated, confusing, and expensive. The simple answer is soap, water, and gentle handling of tissues. Put them in the shower! Except for early clean wounds (see below), most all patients should be in the shower within a couple of days of operation. Astringents (peroxide, betadine, acetic acid, alcohol, Daken’s, etc.) should rarely if ever be used in a wound. There is a widely held misconception that more frequent wound care somehow makes wounds heal faster. This is simply not the case. Keeping wounds clean, moist, and covered allows the body to heal the wounds considerably faster. Astringents, frequent dressing care, and overzealous packing are more often responsible for delays in healing.

Wound Classification
Clean Wounds - These are surgical incisions that follow an elective surgical procedure that does not involve the aerodigestive tract. Examples would be neurosurgical procedures, vascular procedures, hernias and most elective orthopedic procedures. Clean contaminated wounds – These are surgical incisions that follow an elective surgical procedure that crosses the aerodigestive tract. Examples would be most ENT procedures, operations on the gastrointestinal tract, or operation on the lung.
Contaminated wounds – These are incisions that follow an emergent surgical procedure where there is obvious or potential infection. Examples would be perforations of the GI tract, strangulated hernias, complicated soft tissue infections, open fractures.
Dirty wounds – This is really a matter of degree. The difference between contaminated and dirty wounds is really the degree of contamination. Complex wounds with large devitalized areas, gross fecal contamination, large amounts of purulent material, dirt, foreign bodies etc. are usually classified as dirty.

Important Definition
            Dehiscence refers to separation of the wound edges. Dehiscence can further defined as involving the skin and subcutaneous tissue (superficial) or extending to the deeper layers (fascial dehiscence). Evisceration refers to the protrusion of visceral contents through the wound. Not all dehiscence has evisceration but by definition all eviscerations have dehiscence.

Wound management
Wounds are managed in one of three ways:
1.            Primary closure of the skin and subcutaneous tissues (most wounds)
2.            Delayed primary closure. Wounds are left open initially. The skin is then closed primarily between day 3 and 4. Bacterial counts are lowest in the wound at this point and delayed primary closure has the greatest success.
3.            Healing by secondary intention. This technique applies for most open wounds.

Closed wounds
            Wounds that have been closed primarily will seal within 36 hours. After that point it is very unlikely that environmental contamination would compromise the wound. The general rule is to leave the surgical dressing on for 24 hours. After that point the wounds can be covered with a light dry dressing to absorb minor drainage, prevent irritation and for patient comfort. These wounds should be carefully inspected at least once a day for signs of infection (redness, swelling, excessive tenderness, purulent drainage). The subjective patient complaint of wound pain (fever may or may not be present) that increases or is out of proportion to wound size is often the earliest sign of surgical wound infection.

Open wounds
            Contaminated or dirty wounds are often packed and left open. The main clinical reason for this practice is to avoid the high incidence of wound infection if the wounds are closed. The wounds are generally packed tightly to achieve hemostasis after the initial operative procedure. Unless there is a planned return to the operating room for exam under anesthesia, further debridement, and irrigation, these dressings should be taken down and the wound examined at 24 hours. The first dressing change can be quite painful and provisions should be made for adequate analgesia prior to proceeding. Most of the pain emanates from the densely innervated wound edge and care should be taken in this area. If the dressing is adherent gentle wetting with saline will facilitate removal and reduce discomfort. “Clean wound” care rather than “sterile technique” should be the standard practice. At the first dressing change the decision can be made to initiate saline wet to dry dressing or application of a vacuum dressing. At this point a decision can also be made about washing/showering the wound with soap and water. Dressing changes need only be once or twice a day and packing of the wound should be gentle. Saline irrigation of the wound base is permissible. As mentioned previously, astringents should be avoided and every effort should be made to avoid wound dessication by irrigating the wound in between dressing changes if necessary.
            Regarding dressing fixation, the skin should be protected from tape adhesives by using duoderm and Montgomery straps or by application of Bandnet dressing (preferred). Absolutely every effort should be made to simplify wound care prior to discharge. Patients should be given clear instructions on clean wound care, showering should be encouraged. When possible, wounds can/should be dressed with tap water rather than sterile saline which is considerably more expensive and unnecessary for most wounds.

Open wounds and evaporative water loss.
            Open wounds can and do result in significant fluid & electrolyte disturbances. Dehydration from evaporative water loss and malnutrition from protein loss are significant problems with large wounds. This can be amplified if the wound is associated with an enterocutaneous fistula. The patients should be assessed for signs of volume depletion such as excessive thirst, diminished skin turgor, and or low urine output. Keeping the wounds covered and moist reduces evaporative water loss and may reduce protein loss as well.

Wound infection
            The earliest and most frequent sign of wound infection is excessive wound pain and tenderness. Low grade fever, wound redness, and drainage often appear later and can be easily seen with a good exam and dressing change. Wounds should be opened in the affected area to allow drainage, irrigation, and gentle packing just like in open wounds. Wound culture and antibiotics are totally unnecessary except in rare circumstances such as when patients exhibit signs of systemic illness and/or there is prosthetic material in the wound. WARNING! When dealing with abdominal wall wounds, drainage may indicate deep wound problems such as fascial failure and/or evisceration.

Gastrointestinal Tract
            There is a widely held misconception that the gastrointestinal tract in quiescent following illness, injury, and/or surgery.            The gut plays an active role in overall host defenses, gastrointestinal stress ulceration, and systemic inflammation. The historical term attached to the clinical problem of post-operative gut dysfunction was “ paralytic ileus”. This has been shortened in modern medical terminology to “ileus.” The traditional clinical practice is to withhold oral intake and maintain nasogastric decompression until there was clinical evidence indicating return of bowel function (passage of flatus, bowel movement, or audible bowel sounds). This practice is outdated and not consistent with what is currently known about bowel function in illness. The stomach and small bowel function very well following illness, injury, and /or operative intervention unless there has been mesenteric ischemia or long standing obstruction. The actual root cause of the clinical entity referred to as “ileus” is delayed return of colonic function. Although ingrained in our medical terminology, “ileus” is a misnomer and the proper term to use is colonic pseudo-obstruction.
            There are a number of clinical practices that either exacerbate or contribute to colonic pseudo- obstruction. Chief among these are bed rest, narcotic administration and fluid & electrolyte abnormalities. Depending on the clinical circumstances, the clinician also needs to consider other contributing factors such as fecal impaction, resolving peritonitis, intra- abdominal abscess, pneumonia, wound infection, retroperitoneal hematoma, and pseudomembranous colitis. Mesenteric ischemia and early mechanical bowel obstruction, although rare, must also be considered in the differential diagnosis.
For most patients, early mobilization, judicious use of narcotics, as well as attention to fluid & electrolytes can mitigate or prevent pseudo-obstruction. Routine use of an effective bowel regimen and/or early enteral nutrition is also effective depending on the patient and clinical circumstances.
            The main risk to the patient with pseudo-obstruction is colonic ischemia and/or perforation which are dependent upon the degree of colonic distention. Perforation/ischemia is much more likely when colonic/cecal diameter is > 11cm. Under these circumstances, more aggressive management is warranted. For most patients, the treatment of pseudo-obstruction is relatively straightforward. Bowel rest, hydration, and correction of electrolytes are essential. Narcotics should be reduced as much as possible. Depending on the clinical situation, other treatable contributing factors need to be rectified or excluded. Nasogastric tubes are completely unnecessary for the vast majority of patients because they are not effective in reducing colonic distention. NG tubes should be withheld unless the patient is vomiting and/or has evidence of gastric distention on X-ray. A combination of stool softeners and cathartics accompanied by a prokinetic agent Reglan (metaclopramide) are usually effective. Cathartics and prokinetic agents are more effective when given orally but other routes of administration may be necessary depending on the clinical situation. Rectal stimulation with a suppository and/or enema may also produce results. For refractory patients or those with significant colonic distension, a parasympathomimetic agent (neostigmine) can be administered IV with excellent results. Routine use of neostigmine is precluded by side effects such as bradyarrythmias, bronchorrea, and diaphoresis. Patients should be monitored during drug administration particularly if they have known cardiac disease. Decompressive colonoscopy which is both diagnostic and therapeutic may be required for patients with significant colonic distention not responsive to the above measures.

Enteral Nutrition
            Not all patients require early enteral nutrition. Well-nourished patients who sustain mild to moderate injury or those undergoing elective operations tolerate up to seven days of fasting with little or no adverse consequences. However, patients with documented pre-injury or pre-operative malnutrition as well as those patients with complex critical illness/injury clearly benefit from early enteral nutrition. In fact, the evidence supporting early enteral nutritional support in the critically ill is clear and irrefutable. Infectious complications are significantly reduced in patients who receive early enteral nutrition. Early enteral nutrition also maintains gut integrity, reduces the risk of gastrointestinal stress ulceration, and increases the rate of wound healing.

Access routes
            The main difficulty with early enteral nutrition is achieving and maintaining a reliable feeding access. Gastric feeding is well tolerated and most patients can be fed in the stomach. Unfortunately tolerance is an issue for some patients, monitoring may be difficult and the aspiration risk is higher than that for post-pyloric tubes. As the patient improves clinically, aspiration risk declines and the need for post- pyloric access diminishes. Three approaches are used to establish feeding access; nasoenteral feeding tube, surgical jejunostomy, and percutaneous endoscopic gastrostomy (PEG). For the vast majority of patients, a nasoenteral feeding tube is a safe, temporary access. These can be placed blindly (discouraged), via Cortrak image guidance, via endoscopy, fluoroscopy, or at the time of surgical intervention. Since these tubes frequently become dislodged they should be secured in place with a bridle. Nasoenteral feeding tubes are not a reliable long-term access and should be replaced with a jejunostomy or gastrostomy tube. When a patient has significant foregut pathology, a surgical jejunostomy can be placed. This allows enteral feeding to proceed in the absence of an intact/functioning foregut. The most frequently utilized long term feeding access is the PEG. This is a safe, effective way of delivering enteral nutrition for most patients.

Assessing enteral feeding tolerance
            Continuous feeding is the only method used for post-pyloric nasoenteral and jejunostomy feeding tubes. The small bowel will not tolerate bolus feedings. Continuous feeding is preferred even for PEG feedings early but can be changed over to bolus feedings over time. Feeding intolerance manifests clinically in a variety of ways. The key to delivering effective enteral nutrition is to be aware of the clinical manifestations of feeding intolerance and to realize that signs of intolerance vary depending on the feeding access used. Tube feeding reflux, high gastric residuals, vomiting, aspiration, abdominal distention, and diarrhea are all signs of feeding intolerance.

Tube feeding reflux
            In patients with a post-pyloric nasoenteral tube and a nasogastric tube, the first sign of intolerance can be tube feeding reflux in the nasogastric aspirate. The first maneuver should be to confirm tube positions with a radiograph. NG tubes can migrate distally and feeding tubes can be dislodged. Tubes should be repositioned if necessary. Once tube position has been confirmed, then a downward adjustment in rate and/or the addition of a prokinetic agent may be required. If reflux is significant and accompanied by abdominal distention, the best course of action is to hold tube feedings for 12-24 hours and reassess the patient. Sudden abdominal distention and reflux in a patient previously tolerating tube feeds is a very worrisome finding that warrants further investigation.

High gastric residuals
            In patients receiving continuous feeding via a PEG elevated gastric residuals are the first sign of intolerance. Residuals should be monitored every 4-6 hours and should not exceed the sum total of the tube feeding over that time period. When the residuals are elevated to > 500cc in a 6-hour monitoring period, feeding should be withheld and rechecked after one period of rest. A prokinetic agent can be added with success in some patients. Again, elevated residuals and abdominal distention in a patient that previously tolerated feeds should alert the clinician to a change in clinical status that warrants investigation. Occasionally, patients will be fed into the stomach using a small bore nasoenteral feeding tube. Residuals cannot be checked via these tubes and no attempt should be made to do so.

Vomiting/Aspiration
            Vomiting and/or aspiration may be the first sign of feeding intolerance. In the awake patient, complaints of nausea will precede the event, so don’t ignore this complaint. This manifestation is more likely in patients being fed in the stomach via PEG or nasoenteral feeding tube. Remember that post-pyloric feeding reduces but does not eliminate vomiting/aspiration risk. The most prudent course of action is to hold feedings. Depending on the clinical suspicion for aspiration, an evaluation by a physician is warranted. Vomiting will usually dislodge a nasoenteral feeding tube, so replacement and/or verification of position is warranted.

Abdominal distention
            Frequently overlooked, abdominal distention and bloating are the earliest and most reliable signs of intolerance. All patients receiving enteral nutrition should be evaluated daily. Not all patients require an intervention but this should be noted and brought to the attention of the physicians caring for the patient. Acute and/or significant distention may indicate mesenteric ischemia or colonic pseudo- obstruction.

Diarrhea
            Diarrhea is probably the most frequent complication of enteral nutrition. Oddly enough tube feeding is usually not the cause. Sorbitol containing medications are frequently to blame so a review of the medication record is warranted. If indicated, clostridium difficile colitis should be excluded. Higher tube feeding rates may produce diarrhea so a change in rate may be warranted. Anti-diarrhea agents can be utilized if the problem persists. Changes in formula can be made. If the volume of stool exceeds 500-1000cc per day then holding the feeds may be necessary.

Tube maintenance
            Enteral access tubes are expensive and vital to patient care. Every effort should be made to maintain patency and protect against dislodgement.

Small bore feeding tubes
            Standard nursing guidelines for small bore feeding tubes should be rigorously followed to prevent clogging. The most effective way to maintain patency is to flush with tubes frequently with warm water and to avoid medication known to clog these tubes. Whenever tube feedings are interrupted or medications are administered, the tubes should be flushed with warm water.

PEG
            These tubes can and do become clogged and or dislodged. One of the most important aspects of daily PEG care is to assess the tube site and determine tube depth. Nurses should pay close attention to the insertion site for redness, swelling, and/or tube feeding reflux. Following placement, PEG tubes are secured in place using a silastic bolster. These bolsters are applied loosely to maintain the PEG at the original depth of insertion which is charted in the endoscopic procedure note. Each PEG tube has a centimeter marker on the side. The general depth for most patients is between 3-6 centimeters. The depth at insertion should be recorded on the nursing assessment. If the depth marker is more than 1cm less than or more than the insertion depth or there is tube feedings refluxing through the insertion site, feedings should be held and the physician notified immediately. Sustained tightening of the bolster, or sudden jerks on the tube, can bury the mushroom-shaped ‘bumper’, which normally lies in the stomach, into the wall of the stomach or abdominal wall. The result can be ‘feeding’ of the tract rather than the gastric lumen, resulting in severe infection. Remember, a sudden change in PEG feeding tolerance accompanied by abdominal distention can indicate PEG tube migration or dislodgement.

Diarrhea
            Not all liquid stools constitute diarrhea. Diarrhea is defined as frequent loose stools exceeding 1000cc per day and/or producing fluid/electrolyte abnormalities. The clinical objective is to identify and remove treatable causes of diarrhea. Medications are probably the most frequent cause of diarrhea. Drugs that produce diarrhea such as prokinetic agents, oral macrolides, cathartics, and sorbitol containing elixirs should be eliminated when possible. Adjustments in tube feeding rate and/or formula change may be required. Clostridium difficile colitis should be excluded or diagnosed and treated. Diarrhea may accompany a high-grade fecal impaction. Diarrhea may also be the only manifestation of intra- abdominal infection. Surgical resection of the small or large bowel (ileocecal valve in particular) may produce post-operative diarrhea. Diarrhea may follow resolution of pseudo-obstruction or surgical relief of a mechanical small bowel obstruction. In general, treatment is defined by the cause. Medications should be changed/eliminated. Fecal impaction should be cleared. With the exception of C. difficile colitis, symptomatic relief can be provided with anti-diarrhea agents such as combinations of lomotil, Imodium, paregoric, and narcotics.

Clostridium difficile (Pseudomembranous) Colitis
            The Gram negative bacterium Clostridium difficile is part of the normal colonic flora in roughly 20-25% of patients. The bacteria exist in small numbers in balance with other colonic flora and do not cause any problems. Pseudomembranous colitis develops as a consequence of an overgrowth of C. difficile allowing for increased toxin production and mucosal damage. The major mechanism is antibiotic administration that alters/reduces colonic flora allowing room for increased growth of the drug resistant C. difficile bacterium. The disease can be produced by as little as one dose of antibiotics and most often follows single dose antimicrobial administration for perioperative prophylaxis. There is some data to suggest that mechanical bowel preparation/cleansing may produce the disease as well. The most frequent offending antimicrobials are cephalosporin (Rocephin), Clindamycin, ampicillin, and fluroquinolones such as levaquin. The primary manifestation of the disease is diarrhea which may occur up to 14 days after the last antibiotic administration. Occasionally the patients will have abdominal pain and distention. Rarely they will present with or have constitutional symptoms such as fever and systemic toxicity that accompany the diarrhea and abdominal pain. The diarrhea associated with the disease is quite distinct. The frequent passage of small amounts of foul smelling liquid stools should raise clinical suspicion. The diagnosis is easily established by sending a stool specimen for toxin assay. Cultures are of no value because the bacteria are normal resident flora in many patients. First line therapy is metronidazole (Flagyl) administered 10-14 days via the enteral route. Intravenous flagyl is effective for patients who will not tolerate the oral route. Vancomycin given enterally is reserved for patients who present with severe disease and/or fail on Flagyl. Empiric therapy is appropriate after stool cultures have been obtained and can be stopped if the toxin assay is negative. Endoscopy to identify pseudomembranes is occasionally required to establish the diagnosis. Rarely, a patient will develop toxic megacolon and require emergent surgical intervention.

Constipation
There is overlap between constipation and colonic pseudo-obstruction. Abdominal pain, distension, nausea, and vomiting accompanied by absence of a bowel movement for more than several days are the most common symptoms. Unfortunately these symptoms are identical to colonic pseudo-obstruction so the diagnosis is difficult in the hospitalized patient. Narcotics, bed rest, dietary changes, fluid & electrolyte abnormalities, particularly dehydration all predispose the patient to constipation. The key is prevention. Early mobilization of the patient and adequate hydration are essential. Patients who require pain medications should receive stool softeners as a routine. Once constipation develops attention should be turned to correcting the problem. Fecal impaction should be excluded by rectal exam. Remember that diarrhea may be a manifestation of fecal impaction. Stool softeners alone are usually not enough. Unless the patient is vomiting, oral cathartics should be tried initially. Oral Dulcolax tablets and/or milk of magnesia (MOM) can be administered along with oral metaclopramide (reglan) 10-20mg. Osmotic agents such as sorbitol are also effective particularly if administered with dulcolax. These regimens can be repeated. If the patient is vomiting or does not respond to oral therapy, digital rectal stimulation with a dulcolax suppository with or without enemas can be employed. Large volumes of laxatives such is Mirilax or citrate of magnesia should be avoided in patients who already have significant bloating. 
-Paul A. Kearney, MD, FACS, Professor of Surgery